Design of Soft Recovery Facility for Artillery Testing

User Manual for CFD Simulation for Design of SRS Sections

Content

- Objective
- Problem Statement
- CFD Methodology
- Simulation Results
 - Projectile Deceleration
 - Pressure Development
 - Instantaneous Flow Field
- Conclusions

Objective

- A ballistic compression type SRS utilizes compressed air bounded by diaphragm to increase projectile drag & get desired deceleration.
- The use of compressed air provides an increased ramming pressure ahead of projectile, thus helping with higher deceleration.
- However, significantly higher pressure ahead of projectile can be achieved if shock is reflected few times between projectile & diaphragm.
- This phenomena can be simulated by solving time dependent governing equations for fluid domain. Since it involves moving body, adaptive mesh & diaphragm modelling, a special purpose CFD scheme is required

Input File Description

- Diameter of Barrel (Recovery Tube) = 155 (mm)
- Length of Section 1 of Barrel = 4000 (mm)
- Length of Section 2 of Barrel = 10000 (mm)
- Initial Shell Velocity (When Entering Recovery Barrel) = 1000 (m/s)
- Initial Pressure in Section 1 of Barrel = 1.000 (Bar)
- Initial Pressure in Section 2 of Barrel = 5.000 (Bar)
- Initial Temperature of Air inside Barrel Tube = 30 (°C)
- Mass of Shell = 43 (Kg)
- Rupture Pressure of Diaphragm 1 = 10 (MPa)
- Rupture Pressure of Diaphragm 2 = 50 (MPa)
- Gamma (Ratio of Specific Heat) for Air = 1.4
- Molecular Mass of Air = 28 (g/mol)
- Number of Cell (Discretization) = 1000
- Time Instant for Output Generation = 3.0E-03 (sec) July 2020 CFD Analysis - Soft Recovery System

Zeus Numeriy

Output File Description

- There are three output files:
- Output Location:
 - Presents time varying data on shell i.e. its location, velocity, deceleration and pressure on shell nose. Also, generated is pressure on the diaphragm
- Output Instant:
 - For the time instant specified by user, it presents density, velocity, pressure & temperature for the air trapped between shell & diaphragm
- Output First Rupture:
 - For the time instant when first diaphragm ruptures, the file presents density, velocity, pressure & temperature for the air trapped between shell & diaphragm

Problem Statement

- A partial SRS like setup is designed as sample problem statement for development & demonstration of CFD method
- It comprises of two sections: section 1 (4m) contains atmospheric air bounded by a diaphragm that breaks at 10 MPa; followed by, section 2 (10m) that contains compressed air at 5 Bar bounded by diaphragm that breaks at 50 MPa. Schematic is shown below:
- The projectile weighing 43 kg enter the atmospheric section at 1000 m/s.

Projectile Velocity 1000 m/s	4 m Length			10 m Length		
		Atmospheric Air Column	Diaphragm Rupture Pressure = 10 MPa	Compressed Air Column 5 Bars	Diaphragm Rupture Pressure = 50 MPa	
July 2020			CED Analysis - Soft P	CED Analysis - Soft Recovery System		

CFD Methodology

- A one dimensional CFD solver is implemented that solves for transient compressible flow equations in presence of moving boundary.
- The scheme adopted is AUSM-ALE that adapts the mesh size depending upon the change in fluid domain length. The scheme is marched in time with explicit integration with appropriate CFL number
- The solver is further customized to incorporate rupture of diaphragm and instantaneous extension of domain to account for next section of compressed air.
- The solver is implemented using `C' on Linux platform.
 Simulation stops on rupture of second diaphragm.

Zeus Numeriy

Simulation Results

 Attached are time history plot of projectile motion (travel, velocity & deceleration) during its movement inside a representative SRS setup

Simulation Results (Contd..)

- The plots below show development of pressure with time at two locations (i) on projectile nose & (ii) on diaphragm
- Pressure of projectile nose determines the deceleration of projectile where pressure on diaphragm determines time of its rupture.

Zeus Numerix

CFD Analysis - Soft Recovery System

Simulation Results (Contd..)

 The animation shows pressure in the SRS tube. The moving left end of curve signifies moving projectile nose. Observe increase in pressure post shock reflection;

July 2020

CFD Analysis - Soft Recovery System

Simulation Results (Contd..)

Due to compressible nature of fluid, only a limited column of air ahead of projectile attains velocity; Rest of tube remains at static condition;

July 2020

Conclusion

- The shock dynamics due to movement of supersonic projectile inside an enclosed air column is demonstrated using a custom CFD solver.
- We find that reflected shock generate significantly higher pressure which when interacts with projectile causes sudden drop in its velocity.
- The demonstrated CFD technique can be employed for design optimization of full scale SRS system. Objective would be to arrive at section length, pressure of compressed air & rupture pressure of diaphragm.

Thank You!

