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Objective

A Dballistic compression type SRS utilizes compressed air
bounded by diaphragm to increase projectile drag & get
desired deceleration.

The use of compressed air provides an increased ramming
pressure ahead of projectile, thus helping with higher
deceleration.

However, significantly higher pressure ahead of projectile can
be achieved if shock is reflected few times between projectile
& diaphragm.

This phenomena can be simulated by solving time dependent
governing equations for fluid domain. Since it involves moving
body, adaptive mesh & diaphragm modelling, a special purpose
CFD scheme is required
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Input File Description

Diameter of Barrel (Recovery Tube) = 155 (mm)
Length of Section 1 of Barrel = 4000 (mm)

Length of Section 2 of Barrel = 10000 (mm)

Initial Shell Velocity (When Entering Recovery Barrel) = 1000 (m/s)
Initial Pressure in Section 1 of Barrel = 1.000 (Bar)
Initial Pressure in Section 2 of Barrel = 5.000 (Bar)
Initial Temperature of Air inside Barrel Tube = 30 (°C)
Mass of Shell = 43 (Kqg)

Rupture Pressure of Diaphragm 1 = 10 (MPa)
Rupture Pressure of Diaphragm 2 = 50 (MPa)
Gamma (Ratio of Specific Heat) for Air = 1.4
Molecular Mass of Air = 28 (g/mol)

Number of Cell (Discretization) = 1000

Time Instant for Output Generation = 3.0E-03 (sec)
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Output File Description

= There are three output files:

= Qutput Location:

o Presents time varying data on shell i.e. its location, velocity,
deceleration and pressure on shell nose. Also, generated is
pressure on the diaphragm

= Qutput Instant:

o For the time instant specified by user, it presents density,
velocity, pressure & temperature for the air trapped between
shell & diaphragm

= Qutput First Rupture:

o For the time instant when first diaphragm ruptures, the file
presents density, velocity, pressure & temperature for the
air trapped between shell & diaphragm
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Problem Statement

= A partial SRS like setup is designed as sample problem
statement for development & demonstration of CFD method

= It comprises of two sections: section 1 (4m) contains
atmospheric air bounded by a diaphragm that breaks at 10
MPa; followed by, section 2 (10m) that contains
compressed air at 5 Bar bounded by diaphragm that breaks
at 50 MPa. Schematic is shown below:

= The projectile weighing 43 kg enter the atmospheric section

at 1000 m/s.
Projectile
Velocity 4 m Length » 10 m Length .
1000 m/s ™ T >
—_— Atmospheric Diaphragm Rupture iqmgrlessed Diaphragm Rupture
Air Column Pressure = 10 MPa |r5 é)al:;“n Pressure = 50 MPa
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CFD Methodology

= A one dimensional CFD solver is implemented that solves
for transient compressible flow equations in presence of
moving boundary.

= The scheme adopted is AUSM-ALE that adapts the mesh
size depending upon the change in fluid domain length. The
scheme is marched in time with explicit integration with
appropriate CFL number

= The solver is further customized to incorporate rupture of
diaphragm and instantaneous extension of domain to
account for next section of compressed air.

= The solver is implemented using 'C’ on Linux platform.
Simulation stops on rupture of second diaphragm.
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Simulation Results
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Simulation Results (Contd..)

= The plots below show development of pressure with time at
two locations (i) on projectile nose & (ii) on diaphragm

= Pressure of projectile nose determines the deceleration of

projectile where pressure on diaphragm determines time of
its rupture.
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Simulation Results (Contd..)

= The animation shows pressure in the SRS tube. The moving
left end of curve signifies moving projectile nose. Observe

increase in pressure post shock reflection;
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Simulation Results (Contd..)

= Due to compressible nature of fluid, only a limited column
of air ahead of projectile attains velocity; Rest of tube
remains at static condition;

Air Velocity Distribution along SRS Tube Air Velocity Distribution along SRS Tube
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Conclusion

= The shock dynamics due to movement of supersonic
projectile inside an enclosed air column is demonstrated
using a custom CFD solver.

= We find that reflected shock generate significantly higher
pressure which when interacts with projectile causes
sudden drop in its velocity.

= The demonstrated CFD technique can be employed for
design optimization of full scale SRS system. Objective
would be to arrive at section length, pressure of
compressed air & rupture pressure of diaphragm.
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